
NUMERICAL INVESTIGATION OF REPEATED MACH REFLECTION 

AND AMPLIFICATION OF SHOCK WAVES CONVERGING TO THE 

VERTEX OF A CONE 

A. I. Marchenko and V. V. Urban UDC 533.6.011.72 

Results are given for numerical calculations of two-dimensional gasdynamic accu- 
mulation for the convergence of a plane shock wave to the vertex of a cone and 
for the compression of a gas in the cone of a piston. 

It is of interest to solve problems about the convergence of a plane shock wave to the 
vertex of a cone, together with technical applications, connected with the more general 
problem of two-dimensional gasdynamic accumulation. The number of studies devoted to the 
investigation of two-dimensional, cumulative problems is comparatively small. Among them, 
we can note the paper [I], where a qualitative analysis is made for the picture of repeated 
Mach reflection of shock waves having frequency approaching infinity, with the wave front 
approaching the vertex of a wedge-shaped cavity. In that paper, experimental data is given 
that shows sizable growth in the observed intensity of the visible radiation (-10 3 ) and 
density (-10 2 times) with respect to their initial values behind the front of an incoming 
shock wave in air. In [2, 3] diffraction and amplification were considered for a plane 
shock wave on the walls and axis of symmetry for convergence of the wave to the vertex of 
the cone. Using the Chester-Chiznell-Whitham (CCW) method [4] we obtain a solution pre- 
dicting amplification of the shock-wave intensity for asymptotic approach to the vertex 
of a wedge-shaped cavity or cone according to a law close to a power dependence of the self- 
similar Guderley-Landau-Stanyukovich solution [5, 6] for a cylindrical or spherical shock 
wave. The theoretical values of the shock-wave velocity on the axis of symmetry of the cone 
calculated by the CCW method agree well with the data of experimental measurements in argon 
[2] and air [3]. In a number of studies, experiments are described in which gaseous deuterium 
or a deuterium-tritiummixture was compressed in the conical cavity of a shell accelerated 
by x-rays obtained in the conversion of REP energy [7], laser radiation [8, 9], and using 
explosives [i0, 11]. A theoretical analysis of such compression was usually limited to a 
one-dimensional approximation, in which consideration of the cone was replaced by a spherical 
interaction energy that decreased by a factor of 4~/~. Calculations [7, 9, Ii] showed that 
compression and heating of deuterium occur mainly as a result of repeated reflection of a 
shock wave at the vertex of a cone and from the inside of the shell, which in this case is 
damped and imparts its energy to the gas. At the same time, in laser experiments [8, 9, 12], 
compression can evidently be distinguished from a quasi-spherical shell since in certain cases 
the shell always has a small curvature. Deformation of the walls with motion of the compres- 
sible gas of the piston was taken into account in two-dimensional calculations with the use 
of slip grids [13]. Here, a comparison of average calculation parameters according to a 
two-dimensional method with similar parameters, obtained in an approximate model, showed 
good agreement. Taking account of what has been said, it is advisable to calculate the com- 
pression of deuterium in two-dimensional geometry with a plane piston. The aim of the present 
work is the numerical investigation of the problem of a plane shock wave, converging to a 
cone vertex, and either generated in a shock tube or arising as a result of the acceleration 
of a plane shell accelerated by a laser pulse. 

I. In a first approximation we take the gasdynamic formulation of the problem neglect- 
ing dissipative processes of viscosity, thermal conductivity, transport of energy by radia- 
tion, compressibility and deformations of the walls of the cone and the shell. The system 
of partial differential equations in divergent form is written as 
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TABLE I. Maximum Values of Gasdynamic Quantities in the Vertex 
of a Cone for Various Piston Acceleration Regimes 

V a r i a n t  tm" n s e c  Era. J Pro. GPa Pro, mg/cm 3 Tin, 106 K N 

81,1 
64,6 
64,3 
29,9 

0,84 
4,80 
5,02 

16,9 

42 
190 
204 
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4,65 
4,50 
4,60 
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5,34 

23,0 

None 
2.10 ~ 
3.10 ~ 
5.10 a 

Op .}_ div (pr - -  0, O (pu______~) + div (pu~o) 4- O____PP = 0, 
Ot Ot Oz 

0 (pv____~) + div (pvco) @ OP _ O, ( 1 ) 
Ot Or 

0 (pE) q_ div (pEon) -k div (p~o) = O. 
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Initial and boundary conditions are given based on a cone for the cases of a plane 
shock wave with constant parameters behind the front and for a plane piston, moving accord- 
ing to a given law toward the cone vertex: 

u (z, r, t)--u~, P (z, r, t )=P~,  p(z, r, t )=p~,  

v(z, r, t )=O,  t~O,~, z=O,  O ~ r ~ R ;  (2) 

u(z, r, t )=U(t) ,  O ~ z ~ U t ,  O ~ r ~ U t t g a ,  t ~ O ,  (3) 

and in the volume of the cone: 

u(z, r, t ) = 0 ,  v(z, r, t ) = 0 ,  P(z, r, t ) --Po,  p(z, r, t )=po.  (4) 

The system of equations (i) with boundary conditions (2)-(4) was approximated by a 
finite-difference scheme of first order of accuracy for the method of large particles [14], 
modified to take into acconnt the curvilinear and moving boundaries on an Euler grid [15]. 
We assume that there is no flow on the surface of the piston, walls of the cone, and axis 
of symmetry. The cone vertex is assumed to be blunt, and either a plane or an inscribed 
circle with radius ~ << R. 

In order to test the calculation method, we obtain a numerical solution of the problem 
of the diffraction of a plane shock wave moving toward the vertex of a cone with dimensions 
L = 43.4 cm, R = 6.9 cm, and ~ = i0 ~ The gas being investigated is argon, with initial 
parameters P0 = 200 Pa and P0 = 3.521 ~g/cm 3. On the boundary, at the base of the cone,~ 
the boundary conditions Ps, Ps, and Us corresponded to the front of a shock wave with Mach 
numbers M = 6 and M = 10.2. The equation of state for argon was taken to be the ideal-gas 
equation P = (y -- l)pg with adiabatic exponent 7 = 5/3. Using a BESM-6 computer, the com- 
putation time was about 30 min for a single variant on a grid of 51 • 49 cells along the 
radius and axis of symmetry. 

The time development of the two-dimensional structure of the gasdynamic flow is shown 
in Fig. i. The distribution of the density isolines at the times: a) 31.51; b) 48.02; c) 
62.06; d) 78.03; e) 90.02 ~sec for M = 10.2 inside the cone was constructed from the maximum 
value Pm = 31.8 ~g/cm 3 (line i) with step Ap = 0.912 ~g/cm 3 and was numbered in the order 
of decreasing density. The position of the bow and reflected shock waves is determined by 
the bunching of isolines in the bow flow and along the maximum density gradient (dashed 
lines). As can be seen in Fig. la, the incoming shock wave is first reflected in Mach form 
at the wall of the cone, with the point of intersection of the three-wave structure being 
shifted ahead and in the direction of the symmetry axis. Then, after being reflected from 
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Fig. i. Two-dimensional structure of 
gasdynamic flow inside a cone after an 
incoming shock wave (density isolines). 
z, r, cm. 

the axis, it is shifted upward (Fig. ib) and repeates these reflections twice (Fig. ic-e). 
Following a reorganization of the bow structure there is a displacement and successive ref- 
lection of a "suspended" shock wave (dashed lines) on the side wall (Fig. lc) and symmetry 
axis (Fig. ld) -- a double reflection on the axis and a single reflection on the wall (Fig. 
le). As can be seen from Fig. 2a and b, in accordance with the scheme (Fig. la), Mach ref- 
lection of the front is repeated on the walls and symmetry axis of the cone with a frequency 
that is always increasing and leads to a discontinuous increase and subsequent smooth decre- 
ase in shock-wave velocity. In Fig. 2b and c, we show a change in the velocity of the 
front Ds, calculated by the CCW method, for the condition of approach of the front to the 
axis of symmetry to the final minimum distance &r = 0.034 mm (solid lines) and 0.0048 mm 
(dot--dash lines). Numerical values (small circles) of the shock-wave velocity are in satis- 
factory agreement with both theoretical and experimental data (triangles) [2] for both 
variants M = 10.2 (b) and M = 6 (c). The results given in Fig. 2c also show that in the 
ideal-gas approximation, the amplitude of a two-dimensional shock wave increases without 
bound for an asymptotic approximation both to the cone vertex and also to the axis of sym- 
metry.* In this case, on the average, the velocity of the front along the z-axis increases 
approximately according to a power law (straight, inclined lines, Fig. 2c). 

*A similar solution by the CCW method for the growth of the shock-waves amplitude with 
a decrease in cell dimensions in the neighborhood of focusing was obtained in one-dimensional 
calculations [16] by the ,finite-difference method [17]. 
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Fig. 2. Dependence of relative velocity of front Ds/D 0 on 
relative distance to vertex of cone z/L. 

2. We consider the solution of the problem of the accumulation of shock waves generated 
by a plane piston accelerated under the action of laser radiation. Two-dimensional calcu- 
lations for a more detailed solution on the axis of symmetry were not made because they 
require greater computer time. To compare the calculated data with experimental data [8, 
9, 12], we chose cone dimensions R = i mm, ~ = 15 ~ , 6 = 20 ~m; inside, we assumed deuterium 
with P0 = 50 kPa, 90 = 0.09 mg/cm ~. The actual thermodynamic properties of deuterium are 
given in Table i, obtained from calculations based on the Saha model [18] with the adjust- 
ments proposed in [19]. The law of motion of a shell compressing deuterium was given in 

the form 

U(t)=--aln(1-- t /q) ,  O~.~.t..~.t~<@ 

According to [12], this expression is approximated by the "rocket model" of acceleration of 
a shell owing to recoil momentum for its evaporation; the constants a, tm, and t I are de- 
termined experimentally from the laser pulse length and the measured velocity of the shell. 
In the calculation we assumed two piston acceleration regimes with attainment of maximum 
velocity U(t m) = 97 km/sec (for a = 13.3 km/sec, tm = 44.5 nsec, t I = 44.53 nsec) and 202 
km/sec (a = 26.6 km/sec, tm = 20.02 nsec, t I = 20.03 nsec). The first regime corresponded 
to a "heavy" shell made of polyethylene terephthalate of thickness 3 ~m; the second regime 
used a lighter shell (I ~m) in the experiments [12]. The problem was solved, neglecting 
energy dissipation owing to electronic thermal conductivity, radiation transport, compres- 
sibility of the cone walls, which should ensure obtaining the upper boundary based on neutron 
yield. The number of neutrons, measured experimentally, was the single quantity based on 
which we could estimate the compression parameters. In the calculation, the number of neu- 
trons was determined from the formula [20] 

t 

N = 5 < 8v >   /im dVdt, 
0 V  

where <~v>=l,5.10-gT-aaexp(--4250T-~/a), mD=3,35.10 -=4 g.  For  t h e  m o t i o n  o f  t h e  p i s t o n  toward  
the vertex of the cone we assumed: i) the mass of the piston decreases in proportion to the 
instantaneous cross-sectional area of the cone, cut by rigid walls whose mass is neglected; 
2) for t > tm, acceleration of the piston by laser radiation stops, and it moves based on 
its inertia, slowing down only because of the counterpressure of the compressed deuterium. 

For the calculated variants of compression of the gas by the piston, in the table 
we represent the gasdynamic quantities, the total energy of the plasma, and the total neu- 
tron yield when the values at the cone vertex are a maximum. The first three variants 
refer to a low-velocity acceleration regime, and are distinguished by the magnitude of the 
initial piston mass: M 0 = 0.26, 13, and 130 Dg. The gas velocity during compression changes 
in jumps corresponding to reflections of a triple Mach configuration of shock waves on the 
axis of symmetry, and near the cone vertex is about 80 km/sec (variant I) and 150-160 km/sec 
(variants 2 and 3). As can be seen from Table i, neutron yield is not significant for the 
single reflection of shock waves. However, the motion of the "heavy" piston (variants 2 
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Fig. 3. Two-dimensional structure of gasdynamic flow inside 
a cone coupled with a spherical segment after entry of shock 
waves (pressure isolines), z, r, ~m. 
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Fig. 4. Diagram of deformation 
of conical cavity in experiment 
(a), in the one-dimensional 
model formulation (b), and the 
calculated dependence of the 
radius of the cavity relative 
to its experimental value of 
R/Rb (I, 2, 3) on time t (Dsec). 

and 3) continues until it comes to a complete stop after the nonsingle reflection of shock 
waves from the vertex of the cone and the surface of the piston. In the calculation of the 
high-velocity regime (M0 = 4.4 ~g, variant 4) there is only a single neutron pulse, which 
ensures that, in spite of the strong damping of the piston after its maximum velocity is 
attained, the cumulative acceleration of the shock waves enables us to reach Ds > 300 km/ 
sec. For compression of the "heavy" piston, two neutron pulses are observed, where the 
second (N - 106-107 ) is determined by the compression of deuterium by the piston in a 
quasi-isentropic regime. For both acceleration regimes, the number of neutrons obtained is 
an upper estimate, and exceeds by 1-2 orders of magnitude the experimental values N from 
[121. 

3. The gasdynamic approximation, neglecting dissipative processes, in the solution 
of the problem of converging shock waves determines the unbounded increase of velocity, 
pressure, and temperature for the asymptotic approach of theshock-wave front to the cone 
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vertex. As we vary the gasdynamic parameters of damping of the flow, we consider if the 
plane vertex of the cone can be replaced by a hemisphere of radius 6 = i0 ~m inscribed in 
the cone (= = 15~ * In view of the limited computer possibilities, it is not possible to 
consider directly the complete process of evolution of Mach configurations from the acce- 
leration of the piston to the diffraction of shock waves in spherical rounding. Therefore, 
we limit ourselves to a consideration of the final stage of flow, on which the gas, having 
parameters taken from the calculation of variant 4, flows in the region linking the cone and 
the spherical segment (a total length of about 20 ~m along the z-axis). Calculations were 
carried out on a nonregular grid with 1300 cells and a division into 51 • 49 steps along r 
and z. On the basis of the conical part along the radius we assumed constant boundary con- 
ditions, ensuring for t > 0 p deuterium with parameters Ps 9.63 GPa, Ps = 0.415 mg/cm 3, us = 
300 km/sec, Es = 3.53.104 kJ/g, corresponding to the data of variant 4. 

The structure of the formulated gasdynamic flow is shown in Fig. 3 using an isobar 
constructed on a logarithmic scale from the maximum value 1.26 TPa (line I) with step log 
AP = 0.i at times a) 0.02, b) 0.04, and c) 0.047 nsec. Unlike the cases considered earlier 
(Fig. I), the Mach wave formed at the entrance to the cone moves into the spherical segment 
without reflection at the axis of symmetry and is focused at the vertex of the spherical 
segment. The maximum values of the gasdynamic quantities are attained at the wall: Pm = 
1.4 TPa, Pm = 2 mg/cm 3, Tm = 8.24-107 K, where the pressure at first is smoothly reduced 
with distance from the wall to ~i ~m; then it undergoes a sharp jump (bunching of the iso- 
bars in Fig. 3c). Then, this region is broadened in the opposite direction with velocity 
above 650 km/sec, forming behind the front of the reflected shock wave a section with com- 
paratively uniform parameters: T = 4.64.107 K, P = 0.3 TPa for t = 0.052 nsec. The results 
obtained indicate that in the gasdynamic formulation, the maximum parameters of compression 
of deuterium increase with account of sufficiently fine details of geometry in the focusing 
region and, evidently, for an increase in this region of the detail of the calculation grid. 

Thus, for collision of the cumulative shock waves at the vertex of the frustum of the 
cone with radius 6 = 20 ~m the maximum values of the gasdynamic quantities are, in their own 
way, transient values and change with decreasing 6. In view of this, we should estimate 
how much these "transient" values correspond to real values. To do this, we consider the 
expansion of a spherical cavity of radius R 0 (R 0 = R b, R b is the radius of bulging of the 
vertex of the cone, observed in experiments [8, 12]), filled with deuterium having initial 
values of gasdynamic quantities, equal to the maximum Pm, Om, and Tm in a medium mode of 
lead (Fig. 4). In this formulation, the one-dimensional problem of expansion of deuterium 
was solved using a finite-difference Lagrangian scheme with pseudoviscosity [17] with ac- 
count of elastoplastic deformations [21] and real thermodynamic properties of lead, given 
by the tabular, wide-range equation of state [22, 23]. 

As the calculations showed, there is satisfactory agreement between the radius of the 
expanding cavity in lead with its experimental value R b = 40 ~m for the maximum parameters 
of filling, taken from the calculation of high-velocity compression (variant 4). This is 
seen from Fig. 4, where curves i, 2, and 3 correspond to the initial values R 0 = i0, 15, 
and 20 ~m for the same parameters of compressed deuterium. 

The characteristic time of the considerable increase of volume of the cavity was ~iO 
nsec, comparable in value with the time for precompression of deuterium from a heavy shell 
in the quasi-isentropic regime (variants 2 and 3). Hence, in calculations of compression 
of a gas by a heavy, slow target, in the final stage we took account of the compressibility 
of the cone walls, the compliance of which can considerably vary the paameters of compres- 
sion and neutron yield. In view of what has been said, and also taking into account the 
weak dependence of neutron yield N - 104-105 on the thickness of the shell and the angle 

= 15-30 ~ in experiments [12], we can conclude that heating and compression of deuterium 
with the appearance of neutrons can be carried out with the convergence of shock waves not 
only in a quasi-spherical, one-dimensional geometry, but also in a two-dimensional geometry 
with a plane wave front for only a single reflection of shock waves at the vertex of a 
conical target. 

*Such a rounding off of the radius of 10-20 ~n holds in the preparation of conical targets 
for real experiments. 
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NOTATION 

r, z, radial and axial coordinates; t, time; P, p, pressure and densiny; T, temperature; 
V, volume; E, total specific energy; m, mass-velocity vector of gas; v, u, radial and axial 
components of gas velocity; ~, solid angle of cone; R, radius of cone base; L, cone height; 
~, cone vertex angle; U(t), velocity of motion of shell-piston; ~, radius of curvature at 
cone vertex; g = E - ~2/2, specific internal energy; y, adiabatic exponent; M, Mach number; D, 
velocity of shock wave; a, t I, tm, constants in the law of motion of the shell-piston; mD, 
mass of deuterion; N, number of neutrons; M 0, mass of piston; Rb, radius of bulging at the 
vertex of the cone, observed experimentally. Subscripts: 0, initial value; s, boundary 
conditions; m, maximum value. 
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